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The present paper proposes a novel algorithm to detect the free-surface in particle simu-
lations, both in two and three dimensions. Since the proposed algorithms are based on
SPH interpolations their implementation does not require complex geometrical proce-
dures. Thus the free-surface detection can be easily embedded in SPH solvers, without a
significant increase of the CPU time. Throughout this procedure accurate normal vectors
to the free-surface are made available. Then it is possible to define a level-set function algo-
rithm which is presented in detail. The latter allows in-depth analyses of three-dimen-
sional free-surface simulations by using standard visualization tools, including internal
features of the flow. The algorithms proposed for detecting free-surface particles and defin-
ing the level-set function are validated on simple and complex two- and three-dimensional
flow simulations. The usefulness of the proposed procedures to post-process and analyze
complex flows are illustrated on realistic examples.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

In recent years the SPH method has been successfully applied to problems involving free-surface flows with fragmenta-
tion. In order to analyze flows with complex free-surface patterns (fragmentations, air entrapment, etc.) and to face a larger
range of problems it is required to know which particles belong to the free-surface. This detection can also be required for
the enforcement of suitable boundary conditions along the free-surface (surface tension, isothermal condition, etc.) in order
to deal with different physical phenomena and flow behaviors. Dilts [1] developed an algorithm for the free-surface tracking
that can detect free-surface particles in a robust and reliable way and that is applicable to any meshless method. However, it
is quite difficult to implement, particularly in its extension to three-dimensional simulations [2].

In this work a novel algorithm for free-surface detection is presented. Such a scheme, based on the properties of the SPH
kernel, is easy to implement both in two and three dimensions, and computationally cheap. The accuracy of the method is
comparable to that of the method proposed by Dilts. It is possible, indeed, to catch small cavities of diameter as small as 2h (h
being the smoothing length) and fluid elements with dimension smaller than h (like jets and drops). Thanks to these valuable
features, the proposed algorithm can be used at each time-step of the simulations, without an appreciable increase of the
CPU time.

Moreover, free-surface detection permits strong improvement of the post-processing phase, particularly in three-dimen-
sional simulations with complex flow features. In fact, if one uses merely a SPH output, flow analysis is problematic since
data are known on scattered points, and it is difficult to obtain contour plots, slices and iso-surfaces. Such an analysis can
be performed in a straightforward way using standard tools if data are interpolated on a regular grid. In this context it is
. All rights reserved.
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Notation

B renormalization matrix
x spatial position
W kernel function
DV particle volume
k minimum eigenvalue of B�1

N set of all the fluid particles
F set of the particles belonging to the free-surface
E set of particles with k 6 0:20
B set of particles with 0:20 < k 6 0:75
I set of particles with 0:75 < k
h kernel smoothing length
dx average particle spacing
n unit vector normal to the free-surface
s unit vector tangential to the free-surface
/ level-set function
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useful to define a level-set function among the grid nodes. This function permits to distinguish between nodes inside and
outside of the fluid domain. To define the level-set function the detection of the free-surface particles is required as a first
step. Besides its utility for flow analysis the definition of this function may be useful to extend remeshing techniques, see e.g.
[3], to free-surface flow problems.

In the present paper the algorithm for free-surface detection is described and validated in Sections 2 and 3, for both two-
and three-dimensional cases. To assess the accuracy of the algorithm, the validation has first been performed using simple
geometries, and then on complex flow cases. Finally, in Section 4, we describe the procedure to define a level-set function
which can be useful to interpolate flow data on a regular grid. Post-processing results are shown to illustrate the proposed
algorithm capabilities.

2. 2D algorithm

2.1. Algorithm details

The algorithm is composed of two steps: in the first one the properties of the renormalization matrix, defined by Randles
and Libersky [4], are used to find particles next to the free-surface. This first step strongly decreases the number of particles
that will be processed in the second step. In the second step the algorithm, by means of geometric properties, detects par-
ticles that actually belong to the free-surface and evaluates their local normals.

In order to validate it the algorithm has been applied to simple geometries as well as to a dam-break problem (see e.g. [5])
which sketch and initial conditions are displayed in Fig. 1. The complex free-surface behavior of the impact flow simulated is
displayed in Fig. 2. In this figure the plotted rectangles delimit the zones which are enlarged in Fig. 3 to highlight the flow
complexity there, and which are the most challenging for the detection algorithm.

The method used to perform the first step of the algorithm was proposed by Doring [6]; it exploits eigenvalues of the
renormalization matrix [4] defined as:
BðxiÞ ¼
X

j

rWjðxiÞ � ðxj � xiÞDVj
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Fig. 1. Sketch and initial condition of the dam-break problem considered, see e.g. [5].



Fig. 2. Different time instants of the impact flow after the dam-break. The rectangles delimit the zones enlarged in Fig. 3.
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Fig. 3. Values of the minimum eigenvalue k of the matrix B�1. Red particles belong to subset E; green particles belong to subset I; blue particles belong to
subset B. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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where DVj is the volume of the jth particle and WjðxiÞ is the interpolating kernel centered on particle j and evaluated in the
position xi. The spatial derivatives of WjðxiÞ are referred with respect to the position xi.
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Doring showed that the value of the minimum eigenvalue, k, of the matrix B�1 depends on the spatial organization of the
particles j in the neighborhood of the considered calculation point i. When going away from the fluid domain this eigenvalue
k tends theoretically to 0 while inside this domain k tends theoretically to 1. This allows to determine regions of the fluid
domain where the free-surface can lie or not.

Let us define N as the set of all the fluid particles and F � N as the subset of particles belonging to the free-surface. Then,
computing k for each particle, it is possible to further define three complementary subsets: E composed by particles belong-
ing to thin jets and drops, characterized by low values of k; I composed by interior particles far from the free-surface, char-
acterized by high values of k; and B composed by particles which are close to the free-surface or are in regions of the domain
where particles are not uniformly spread. Particles belonging to the last subset are characterized by intermediate values of k.
We have that N ¼ E [ I [ B. The free-surface particles subset F is thus composed of all the particles of subset E and a part of
the elements of subset B.

To identify these subsets it is possible to define threshold values of k which depend on the considered kernel. Here we use
a renormalized gaussian kernel shape, see [5], with a support radius equal to 3h, where h is the smoothing length and is
equal to 1:33dx. dx is the average particle spacing which means that in two dimensions a particle has ’ dx2 for volume
and an average number of neighbors equal to 50. All the results and the conclusions presented in this work have to be con-
sidered valid only for the aforementioned h=dx ratio. Several tests have been performed to set the proper thresholds for k.
Being i the particle under examination, the values found are the following:
i 2 E () k 6 0:20
i 2 B () 0:20 < k 6 0:75
i 2 I () 0:75 < k

8><
>: ð2Þ
In this way the first step of the algorithm computes the minimum eigenvalue for each particle and gives a first rough detec-
tion of the free-surface. This operation has a very low computational cost especially if the renormalization matrix is already
computed in the SPH scheme, as e.g. in the formulation proposed in [4]. In Fig. 3 one can observe the result of this first detec-
tion. Particles next to the free-surface and near cavities are correctly detected but this also happens for some particles within
internal fluid regions characterized by non-uniform distribution. Conversely, particles which belong to drops and thin jets
are easily captured by the lower threshold and directly identified as free-surface particles (red coloured).

In the second step of the algorithm, a more precise and reliable control is performed on particles belonging to B in order
to complete the free-surface detection. The proposed method is based on the fact that, inside the fluid domain, the sum of the
kernel gradient over neighbors is very close to zero. When a particle, instead, is near the free-surface, such sum is a good
approximation of the local normal n to the free-surface, see [4]. Since the accuracy of the evaluation of this vector depends
on the particle disorder, it is possible to get a more accurate evaluation by using again the renormalization matrix:
nðxiÞ ¼
mðxiÞ
jmðxiÞj

; mðxiÞ ¼ �BðxiÞ
X

j

rWjðxiÞDVj ð3Þ
This is a standard way to improve accuracy of the SPH interpolation within the fluid domain, see e.g. [4]. Here we use the
same principle to improve the accuracy of the evaluation of the local normal. Once this vector n is known, it is possible
to define a region of the domain like the one sketched in Fig. 4. The algorithm then checks whether or not at least one neigh-
bor particle lies in this region, hereinafter referred to as scan region. If no neighbor is found inside it, the candidate particle
belongs to the free surface. It must be noted that inside the fluid domain this region cannot be void since h ¼ 1:33dx.
Fig. 4. Sketch of the regions used in the algorithm.



3656 S. Marrone et al. / Journal of Computational Physics 229 (2010) 3652–3663
This control is carried out by the algorithm in the following way. We denote by i 2 B the particle that is under examina-
tion and by j 2 N the neighbor of i which is included in a 3h radius distance. We define also the point T at distance h from i in
the normal direction and the unit vector s perpendicular to n. The conditions to assess whether particle i belongs or not to
the free-surface are therefore:
Fig. 5.
those d
version
8j 2 N jxjijP
ffiffiffi
2
p

h; jxjT j < h
h i

) i R F

8j 2 N jxjij <
ffiffiffi
2
p

h; jn � xjT j þ js � xjT j < h
h i

) i R F

otherwise i 2 F

8>>><
>>>:

ð4Þ
where notation Aij ¼ Ai � Aj has been used. If the first condition is true it means that the neighbor under examination is in the
dark grey region (S1) in Fig. 4 while, if the second condition is true, it means that the neighbor is in the pearl grey region (S2).
The two regions together form the scan region.

If any neighbor is located in the scan region it means that there is no cavity in the normal direction, or that this cavity has a
diameter less than 2h, so that particles inside it are deeply interacting and it is not a true cavity. Therefore, through this pro-
cess we are tracking the free-surface of cavities of diameter larger than 2h. More details on the geometry used for the scan
region are given in Appendix A.1.

It can be noticed that for some particle distributions, e.g. for thin jets, the sum of the kernel gradient can go to zero, giving
wrong values for vector n. However, in this circumstance the eigenvalue k will be very low and the particle will hence have
already been detected as a free-surface particle in the first step of the algorithm. This first step has thus two functions: it is an
efficient selection allowing to quickly perform the second step, and a tool to detect particles belonging to jets and drops
which could hardly be detected by the second step of the algorithm.
2.2. Validation

In the left part of Fig. 5 the algorithm is validated for an elliptic fluid domain, with 0.661 eccentricity. Since the evaluation
of the free-surface normals is critical for the algorithm effectiveness, the ones calculated by the algorithm are compared to
the analytical values. In this comparison a uniform distribution of particles had to be used inside the fluid domain in order to
assign exact volumes to the particles. Results are reported in Table 1 in terms of average relative angle error. The conver-
gence is close to quadratic.

In the right part of Fig. 5 an elliptic cavity with minor axis equal to 2h was introduced in the ellipse. This cavity has thus
the minimum dimension which the algorithm is able to detect.

After this simple test, the algorithm is further assessed on the complex flow situations presented in Fig. 3. The free-surface
particles detected by the algorithm are plotted in pink in Fig. 6. Despite the geometrical complexity of these configurations,
the proposed method is able to provide a very good qualitative estimation of the particles which form the boundary. In par-
ticular one can observe that approximately circular cavities of diameter just larger than 2h are well detected.

Even though the algorithm requires a cycle on the neighbors for each particle involved in the second step, it has still a very
low computational cost. Actually, all but a few percents of the particles are filtered out in the first step.

The CPU time cost of the algorithm is lower than 5% of the total cost of a standard SPH calculation, where the latter in-
cludes the calculation of the neighbor list and the summations for the continuity and momentum equation. It is the compu-
tation of the renormalization matrix which takes the most part of the CPU time required by the algorithm (about 90%).
Hence, if the renormalization matrix is already evaluated in the numerical scheme, see e.g. [7,4], the increase of CPU time
2h

Left: free-surface detection of an elliptic fluid domain. Right: free-surface detection in an elliptic cavity of minor axis equal to 2h. Red particles are
etected by the proposed free-surface algorithm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
of this article.)



Table 1
Average relative angle error between the analytically computed normals and the one evaluated by Eq. (3). h=a denotes the ratio between the smoothing length
and the semimajor axis.

h=a� 10�2 7.52 3.76 1.88 0.94 0.63 0.38

e 2.16 1.23 0.68 0.34 0.23 0.13
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Fig. 6. Results after the application of free-surface detection algorithm: free-surface particles are displayed in pink with their normals; in the bottom part
small cavities of 2h diameter are shown. A circle with dimension 2h is reported for comparison.
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due to free-surface detection is absolutely negligible. Moreover, if the algorithm is used only for visualization or analysis pur-
poses, it has to be applied only periodically (typically every 100 time-steps), and its cost becomes again negligible.
3. 3D algorithm

3.1. Algorithm details

The extension of the algorithm to the third dimension is rather straightforward and easy to implement. The algorithm has
still the same structure as the two-dimensional one: it is composed of a first step where particles far from the free-surface
are filtered out, and of a second step to refine the detection only to the particles belonging to the free-surface. In the first step
the minimum eigenvalue k of the renormalization matrix is again needed for each particle. Again, two thresholds are used
which are the same as in two dimensions. These thresholds are valid for the renormalized gaussian kernel with support ra-
dius equal to 3h and h=dx ¼ 1:33 (this means an average number of neighbors equal to 266).

While the first step is formally unchanged in the extension to three dimensions, the second step is slightly modified. The
vector n is still evaluated through Eq. (3) but the conditions which define the region to scan become:
8j 2 N jxjijP
ffiffiffi
2
p

h; jxjT j < h
h i

) i R F

8j 2 N jxjij <
ffiffiffi
2
p

h; arccos n�xji

jxji j

� �
< p

4

h i
) i R F

otherwise i 2 F

8>>><
>>>:

ð5Þ
Therefore, in an intuitive way, the triangular region in Fig. 4 becomes a cone in three dimensions, while the semicircle be-
comes a hemisphere.

3.2. Validation

In the three-dimensional case it is more complex to test the algorithm and assess its accuracy.
Indeed, unlike in 2D cases, in 3D problems even a qualitative evaluation of the particles belonging to the free-surface

could be quite difficult. In particular cavities and jets are generally blurred since particles are spread in the space in a dis-
ordered way.

In order to overcome this problem the algorithm was tested on a particle distribution with a free-surface which is known
a priori. According to this strategy two tests were performed. In the first one particles are arranged to form a sphere with a
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spherical cavity inside, as sketched in left panel of Fig. 7. In order to have a regular distribution, particles are placed on con-
centric spheres with radius increasing by dx, where dx is cubic root of the particle volume. On each sphere, particles are equi-
spaced with a distance approximatively equal to dx. The cavity inside the sphere has a diameter equal to 4dx ’ 3h. This
quantity is actually slightly larger than 2h which is the limit size for detecting a cavity. However, choosing a smaller cavity
radius was not possible in practice. Indeed, this would have resulted in having too few particles distributed on the cavity
surface, resulting in a bad approximation of their volumes, and consequently providing an inappropriate test of the algo-
rithm. The particle distribution is shown in the right panel of Fig. 7. In such a view it is not possible to detect the cavity inside
the sphere.

The result given by the algorithm is presented in Fig. 8. The two detected free-surfaces (the ones from the inner and outer
spheres) are shown separately to better evidence the normals. We notice that free-surface particles and normals are cor-
rectly evaluated both in the cavity and along the external surface. Similarly to the 2D case, in Table 2 calculated free-surface
normals are compared to analytical values in terms of average relative angle error for a spherical fluid domain. Again, the
convergence rate is close to quadratic.

In order to assess the capability of the algorithm to capture cavities of dimension equal to 2h, a more complex test was
performed. As displayed in the left panel of Fig. 9, a toroidal cavity was created inside the sphere. The width of the torus is 2h
and the torus ring diameter is 14dx. Again, when showing the whole particle set, it is not possible to distinguish the toroidal
cavity inside the sphere (see right panel of Fig. 9). The free-surface particles detected by the algorithm are shown in Fig. 10.
Also in this case free-surface particles and normals are correctly evaluated.

To illustrate the method capabilities on an actual complex 3D situation we show the results of the application of the algo-
rithm on an impact flow (see e.g. [8] and [9]). The sketch of the problem geometry is displayed in Fig. 11. In Fig. 12 the whole
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to perform this procedure it is necessary to locate the free-surface across the grid. In other words, one needs to separate
nodes inside the fluid domain from those outside. This can be done from the knowledge of the free-surface particle subset
Fig. 12. 3D impact against a tall structure after a dam-break. Left: whole particle distribution over the fluid domain; the colours represent the pressure.
Right: free-surface particles detected by the algorithm at same time instant.
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F. Let us consider a regular Cartesian grid of spatial resolution dx, and which encloses all the computational domain. For each
node N close to free-surface particles of subset F, the nearest free-surface particle FN is detected and the scalar quantity dNFN

is evaluated through:
Fig. 15.
surface
stage o
dNFN ¼ ðxFN � xNÞ � nFN ð6Þ
where nFN is the normal to the free-surface evaluated in FN . For each node it is now possible to define a level-set function
/ðxNÞ:
/ðxNÞ ¼
�1 dNFN 6 �2h

dNFN=2h �2h < dNFN < 2h

þ1 dNFN P 2h

8><
>: ð7Þ
3D Flow impact against a tall structure after a dam-break. Top: two views of the free-surface represented by iso-surface / ¼ �dx=4h. Middle: free-
and pressure contours interpolated on a vertical plane at two different time instants. Bottom: two views of the free-surface iso-surface at a later

f the flow evolution; on the right plot a detail of the cavity generated in front of the column is given (seen from below).
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This function is positive inside the fluid, negative outside it and equal to 0 along the free-surface where dNFN ¼ 0. More pre-
cisely, under the assumption that the actual free-surface location is at a distance dx=2 from the center of mass of particles
belonging to F, the value of / on the free-surface has to be / ¼ �dx=4h and not zero anymore.

At the computational level, the procedure to evaluate / can be executed in a fast manner. At each node we first identify
the particles present within a 2h-distance. We denote N2h this subset of particles through which we can evaluate the func-
tion /ðxNÞ as:
� 1 N2h ¼ ;
þ 1 N2h–;; N2h \ F ¼ ;
dNFN=2h N2h – ;; N2h \ F – ;; kFN P 0:1
� jxN � xFN j=2h N2h–;; N2h \ F – ;; kFN < 0:1

ð8Þ
where kFN is the minimum eigenvalue of the matrix B�1 [see Eq. (1)] for the particle FN . For kFN < 0:1 the nearest free-surface
particle for the node N is a solitary particle. In such a case the vector nFN is null (see Eq. (3)) and consequently the scalar
product dNFN is meaningless. Therefore, the latter is directly substituted with the distance jxN � xFN j. Further, to smooth
out the function / on the whole mesh, a Gaussian filter on the nodes is performed once / is evaluated by Eq. (8).

In Fig. 13 the contour plots of function / for the two time instants of Fig. 3 are shown. The free-surface is represented by
the red dash-dotted line which corresponds to the contour level / ¼ �dx=4h, in close agreement with the free-surface par-
ticles positions if they were shifted by dx=2.

In 3D simulations the interpolation on a regular mesh clearly brings higher benefits. Indeed, the visualization and the flow
analysis of a 3D SPH simulation is generally quite difficult. This is highlighted in Fig. 14 where a spherical fluid domain with
three concentric toroidal cavities and a small spherical cavity of 3h diameter is considered. Even though only the free-surface
particles are shown (left panel), it is obvious how difficult it is to detect the geometry of the fluid domain. On the right side of
the same figure, the iso-surface / ¼ �dx=4h representing the free-surfaces conversely gives a clear representation of the fluid
domain, thanks to transparency features which are a standard visualization tool on a regular mesh.

Some interpolation results of the impact flow shown in Fig. 12 are presented in the following. This operation has been
carried out with a Moving-Least Square (MLS) interpolator that exactly interpolates a linear field on a regular grid from scat-
tered points, see e.g. [10]. The representation of the free-surface is given by the iso-contour / ¼ �dx=4h in Fig. 15. In partic-
ular, the pressure distribution during the impact is evidenced through contours interpolated on a vertical plane inside the
domain. Finally, the last plots of Fig. 15 show how it is possible to analyze flow internal details through the reconstruction
of the free-surface as an iso-surface. In particular, entrapped bubbles and a large tube cavity due to a strong wave breaking
are clearly identifiable.
5. Conclusion

An efficient algorithm capable to detect the free-surface in SPH methods has been proposed in 2D and 3D simulations. It is
composed of two stages. The first stage consists in detecting the particles composing the free-surface. From this information,
it is possible to define a level-set function throughout the domain in a second stage. This function can be used to interpolate
flow quantities on a cartesian grid, which makes possible the visualization and analysis of flow features using standard visu-
alization tools. The two stages have been carefully validated on test cases of increasing complexity, up to real 3D impact flow.

On these test cases it has been shown how the method allows detecting flow details such that thin jets, drops, entrapped
air structures, etc. as well as to recover contour slices, iso-surfaces, etc. in an efficient way. The algorithm proposed in the
present paper could be exploited to impose specific conditions on the free-surface, or to extend remeshing techniques to
free-surface flow problems.
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Appendix A

A.1. Motivation for the shape of the scan region adopted

The choice of the shape of the scan region, composed by a half circle and a half square rather than by a simple circle for
instance, is explained in the following.

In top sketch of Fig. 16 a uniform distribution of particles is considered. In such a configuration only the first row of par-
ticles should be detected as free-surface. In the left part of the sketch the scan region is reported for a particle belonging to the



Fig. 16. Sketch of the scan region applied on uniform distribution (top panel) and on free-divergence stretched distribution (bottom panel). On the right a
comparison with the arc-method, see [1].
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second row. Two particles are present in the scan region which means that the second row is not detected as free-surface. On
the right part of the same sketch circles with diameter equal to h have been reported in order to show that also the arc-meth-
od proposed in [1] gives the same result. In the bottom sketch of Fig. 16 a divergence-free stretching is applied to the pre-
vious particle distribution. Due to this stretching, the horizontal distances between the particles are equal to

ffiffiffi
2
p

dx while the
vertical ones are equal to dx=

ffiffiffi
2
p

. There is hence a ratio 2 between these two distances. We can consider it a limiting case: for
a ratio 2 or higher, the considered particle of the ‘‘second row” belongs to the free-surface, for a lower ratio it does not belong
to it. Using the procedure described in [1] an arc of 12o is not covered by other neighbor circles; hence the particles of the
second row are considered as free-surface particles. This occurs also using the proposed algorithm since the scan region is
now empty. If a fully circular shape was used as scan region, the particles of the second row would not be detected as
free-surface particles. Other shapes could be adopted as scan region. Anyway, in order to correctly detect the free-surface,
two requirements have to be satisfied: (a) the detection of circular cavities of diameter equal to 2h, (b) in the example dis-
cussed above the second row of particles in bottom plot of Fig. 16 has to be detected as free-surface.
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